Deformation quantization: Quantum mechanics lives and works in phase space

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deformation Quantization: Quantum Mechanics Lives and Works in Phase-space

Wigner’s quasi-probability distribution function in phase-space is a special (Weyl) representation of the density matrix. It has been useful in describing quantum transport in quantum optics; nuclear physics; decoherence (eg, quantum computing); quantum chaos; “Welcher Weg” discussions; semiclassical limits. It is also of importance in signal processing. Nevertheless, a remarkable aspect of its...

متن کامل

Deformation Quantization: From Quantum Mechanics to Quantum Field Theory

The aim of this paper is to give a basic overview of Deformation Quantization (DQ) to physicists. A summary is given here of some of the key developments over the past thirty years in the context of physics, from quantum mechanics to quantum field theory. Also, we discuss some of the conceptual advantages of DQ and how DQ may be related to algebraic quantum field theory. Additionally, our previ...

متن کامل

Deformation quantization of noncommutative quantum mechanics and dissipation ∗

We review the main features of the Weyl-Wigner formulation of noncommutative quantum mechanics. In particular, we present a ⋆-product and a Moyal bracket suitable for this theory as well as the concept of noncommutative Wigner function. The properties of these quasi-distributions are discussed as well as their relation to the sets of ordinary Wigner functions and positive Liouville probability ...

متن کامل

Schrödinger Equation in Phase Space and Deformation Quantization

We justify the relevance of Torres-Vega Schrödinger equation in phase space using Stone-von Neumann’s theorem, and relate it to deformation quantization. Received ...., revised .... MSC 2000: 81S30, 43A65, 43A32

متن کامل

Deformation Quantization of Nambu Mechanics

Phase Space is the framework best suited for quantizing superintegrable systems— systems with more conserved quantities than degrees of freedom. In this quantization method, the symmetry algebras of the hamiltonian invariants are preserved most naturally, as illustrated on nonlinear σ -models, specifically for Chiral Models and de Sitter N-spheres. Classically, the dynamics of superintegrable m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: EPJ Web of Conferences

سال: 2014

ISSN: 2100-014X

DOI: 10.1051/epjconf/20147802004